Download A survey of the spherical space form problem by J. F. Davis PDF

By J. F. Davis

Show description

Read Online or Download A survey of the spherical space form problem PDF

Similar geometry and topology books

The Geometry of Time (Physics Textbook)

An outline of the geometry of space-time with the entire questions and matters defined with out the necessity for formulation. As such, the writer indicates that this is often certainly geometry, with real buildings accepted from Euclidean geometry, and which enable distinctive demonstrations and proofs. The formal arithmetic at the back of those buildings is supplied within the appendices.

Additional info for A survey of the spherical space form problem

Example text

Proof. 2 ) shows that X , KjC |z KjC |z , Y 2 = z , e2j C − z , e1j C C e1j , X z , e2j e1j , Y C + z , e1j e1j , X C e2j , Y C C 2 e2j , X C e2j , Y C + e2j , X C e1j , Y C X , e2j C C C . 2 we have eµj , z 2 C C 2 2 z , ej C X , e2j 2 C z , e1j +2 √ 2 + 1 + 2a(a + 2) eµj , z0 √ 1 ≤ 1 + 2a(a + 2) 1 + 2xj (z0 ) . 6) yield eµj , X 2 C ≤ 1 + 2 eµj , z0 2 X ,X ≤ 1 + 2xj (z0 ) X , X h . 8). ´ ` 1 SEMINAIRES & CONGRES 2 C h C 2 . ANALYTIC MANIFOLDS OF NONPOSITIVE CURVATURE 23 Now, we collect the information.

5) it is clear that πI−1 {p} is a totally geodesic product torus in WIU × (R/2πZ) #I equipped with the metric πI∗ g0 + gI . If η is sufficiently small, then the function x → x + η 2 h(x), x ≥ 0, takes its absolute minimum precisely at x = 0. Hence, for these values of η all closed geodesics of the torus are absolutely minimizing elements in their homotopy classes in WIU × (R/2πZ) metric πI∗ g0 + gI #I . In order to pass from the partial to πI∗ (g), we add a positive semidefinite term which vanishes on the torus.

1 (i). ´ E ´ MATHEMATIQUE ´ SOCIET DE FRANCE 1996 44 U. ABRESCH V. SCHROEDER Proof. 7 (ii) that β(η, xi1 ) β(η, xi2 ) ξi1 , LI ξi2 +η 2 h (xi1 ) β(η, xi2 ) vi1 , LI ξi2 + η 2 β(η, xi1 ) h (xi2 ) ξi1 , LI vi2 + η 4 h (xi1 ) h (xi2 ) vi1 , LI vi2 1/2 1/2 ≤ η 2 (1 + 2c4 η 2 )2 cˆ12 (η)xi1 xi2 (1 + xi1 ) −1/2 (1 + xi2 ) −1/2 hence the claim. 13) ∧ LI ∧ pξi vanish identically and that pbi ˆi = B ∧ pbi = −pi 1 + x−1 β(η, xi )2 ξi , LI ξi pi i ∧ ∧ pi pi . 2 (i), we can finish the proof setting cˆ14 := c0 (1 + c4 η)(1 + c4 η 2 ) and cˆ15 := c0 c4 (1 + η + c4 η)(1 + c4 η 2 ) .

Download PDF sample

Rated 4.67 of 5 – based on 49 votes